The Crystal Structure of $\mathbf{C r}_{\mathbf{2}} \mathbf{F}_{5}$

By H. Steinfink
Department of Chemical Engineering, The University of Texas, Austin 12, Texas, U.S.A.
and John H. Burns
Reactor Chemistry Division, Oak Ridge National Laboratory*, Oak Ridge, Tennessee, U.S.A.

(Received 29 July 1963)

Abstract

The crystal structure of $\mathrm{Cr}_{2} \mathrm{~F}_{5}$ was determined by a single-crystal X-ray diffraction study and was refined by the method of least-squares with use of anisotropic temperature factors. The chromium ions exist in two valence states (II, III) in an ordered arrangement and are distinguished by their fluoride-ion environments. The octahedra of fluoride ions about the Cr^{3+} ions are almost regular, but the octahedra which coordinate the Cr^{2+} ions are distorted by having two long $\mathrm{Cr}-\mathrm{F}$ distances. These configurations are explained by ligand-field theory. The anisotropy of thermal motion is discussed.

Introduction

The crystal structures of CrF_{2} and CrF_{3} were reported by Jack \& Maitland (1957), confirming the symmetry of the fluoride-ion octahedra predicted by ligandfield theory (Orgel \& Dunitz, 1957). The structure of CrF_{3} was also studied by Knox (1960). In CrF_{3} the chromium(III) ions are coordinated by regular octahedra of fluoride ions at a distance of $1 \cdot 90 \AA$, but in CrF_{2} the chromium(II) ions are coordinated by octahedra with four nearly equal $\mathrm{Cr}-\mathrm{F}$ bonds of 1.98 and $2.01 \AA$ and two long $\mathrm{Cr}-\mathrm{F}$ bonds of $2.43 \AA$. The distortion of the octahedra in CrF_{2} was attributed to the repulsive force exerted on the ligands along the z axis by an electron in the $3 d_{z 2}$ orbital of the spinfree Cr^{2+} ion. This orbital is unoccupied in trivalent chromium and all six bonds are equivalent. All of the chromium(II) halides exhibit distorted halide octahedra; a comparison of these structures was made by Tracey, Gregory \& Lingafelter (1962). The magnetic structures of CrF_{3} and CrF_{2} were investigated by Wollan, Child, Koehler \& Wilkinson (1958) and by Cable, Wilkinson \& Wollan (1960) respectively.

The binary system $\mathrm{CrF}_{2}-\mathrm{CrF}_{3}$ (Sturm, 1962) has a single intermediate compound whose composition varies from $\mathrm{CrF}_{2.40}$ to $\mathrm{CrF}_{2.45}$. Single crystals with compositions in this range were examined by X-ray diffraction methods. From a determination of the unitcell dimensions and the probable space group, it seemed likely that the structure is based on an ideal stoichiometry of $\mathrm{CrF}_{2.50}$, i.e. $\mathrm{Cr}_{2} \mathrm{~F}_{5}$. There is an analogous phenomenon, for example, in the compound FeO which has the NaCl structure with ideal 1:1 composition, but which actually exists only in the range $\mathrm{FeO}_{1.06}$ to $\mathrm{FeO}_{1.12}$ (Jette \& Foote, 1933).

A complete structure determination was therefore undertaken to ascertain this ideal structure for

[^0]$\mathrm{Cr}_{2} \mathrm{~F}_{5}$ and to examine the possibility that the chromium ions in two valence states in the same crystal could be distinguished by their fluoride-ion environments.

Experimental

The crystals of $\mathrm{Cr}_{2} \mathrm{~F}_{5}$ were complexly twinned, but small single-crystal fragments were selected and threedimensional X-ray diffraction data were collected by means of a General Electric Single-Crystal Orienter, a scintillation counter, and Mo $K \alpha$ radiation. The stationary crystal, stationary counter method was used. The crystal system is monoclinic,

$$
\begin{gathered}
a=7.773 \pm 0 \cdot 005, b=7 \cdot 540 \pm 0 \cdot 005, c=7 \cdot 440 \pm 0.005 \AA, \\
\beta=124 \cdot 25 \pm 0 \cdot 1^{\circ}, Z=4 ;
\end{gathered}
$$

and the most probable space group is $C 2 / c$. The structure was solved from h $0 l$ and $h k 0$ Patterson projections, and initial parameters for refinement were obtained from subsequent electron-density projections. The atoms are located in the following equipoints listed by International Tables for X-Ray Crystallography (1952): chromium in $4(a)$ and $4(b)$; fluorine in $4(e)$ and two sets of $8(f)$. The variable parameters associated with these atomic positions and individual isotropic temperature factors were adjusted by leastsquares refinement employing three-dimensional data and unit weights. The refined values are given in Table 1.Thediscrepancy factor, $R=\Sigma| | F_{o}\left|-\left|F_{c}\right|\right||\Sigma| F_{o} \mid$, for 285 observed reflections is 0.051 .
An analysis of the structure at this stage of the determination gave evidence that the different values of the isotropic temperature factors for the fluoride ions were physically meaningful; therefore a refinement of the structure with anisotropic temperature factors was carried out. A temperature factor of the form

$$
\exp \left[\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+\beta_{12} h k+\beta_{13} h l+\beta_{23} k l\right)\right]
$$

Table 1. Final coordinates, standard deviations, and temperature factors from isotropic least-squares refinement

Ion	x	$\sigma(x)$	y	$\sigma(y)$	z	$\sigma(z)$	B	$\sigma(B)$
Cr^{3+}	0	-	0	-	0	-	0.49	0.04
Cr^{2+}	0	-	0.5000	-	0	-	0.77	0.05
$\mathrm{~F}^{-}(1)$	0	-	0.0474	0.0012	0.2500	-	1.41	0.15
$\mathrm{~F}^{-}(2)$	0.2959	0.0009	-0.0190	0.0009	0.1774	0.0009	$1 \cdot 19$	0.10
$\mathrm{~F}^{-}(3)$	0.0212	0.0010	0.2462	0.0011	-0.0307	0.0010	1.64	0.10

Table 2. Final positional parameters and standard deviations from anisotropic least-squares refinement

Ion	x	$\sigma(x)$	y	$\sigma(y)$	z	$\sigma(z)$
Cr^{3+}	0	-	0	-	0	-
Cr^{2+}	0	-	0.5000	-	0	-
$\mathrm{F}^{-}(1)$	0	-	0.0475	0.0007	0.2500	-
$\mathrm{F}^{-}(2)$	0.2955	0.0005	-0.0192	0.0005	0.1762	0.0006
$\mathrm{~F}^{-}(3)$	0.0207	0.0006	0.2448	0.0004	-0.0304	0.0006

Table 3. Final ánisotropic temperature coefficients $\left(\AA^{2} \times 10^{3}\right)$

Ion	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Cr^{3+}	$3 \cdot 5 \pm 0 \cdot 3$	$2 \cdot 9 \pm 0 \cdot 3$	$3 \cdot 3 \pm 0 \cdot 3$	-0.1 ± 0.5	$2 \cdot 9 \pm 0.5$	$0 \cdot 5 \pm 0.5$
Cr^{2+}	$5 \cdot 4 \pm 0 \cdot 3$	$2 \cdot 4 \pm 0 \cdot 3$	$4 \cdot 8 \pm 0 \cdot 4$	-0.2 ± 0.5	$3 \cdot 6 \pm 0 \cdot 5$	-0.4 ± 0.5
F-(1)	$12 \cdot 5 \pm 1 \cdot 3$	8.5 ± 0.9	$7 \cdot 1 \pm 1 \cdot 3$	0	$13 \cdot 4 \pm 2 \cdot 2$	0
F-(2)	$4 \cdot 0 \pm 0 \cdot 6$	$7 \cdot 5 \pm 0 \cdot 7$	$7 \cdot 5 \pm 0 \cdot 8$	$1 \cdot 6 \pm 1 \cdot 1$	$3 \cdot 1 \pm 1 \cdot 2$	$3 \cdot 3 \pm 1 \cdot 2$
F-(3)	$13 \cdot 6 \pm 1 \cdot 0$	$2 \cdot 7 \pm 0.5$	12.0 ± 0.9	$-1 \cdot 2 \pm 1 \cdot 1$	$14 \cdot 6 \pm 1 \cdot 5$	$0 \cdot 8 \pm 1 \cdot 2$

Table 4. Observed and calculated structure factors

| h | | ℓ | $\left\|F_{0}\right\|$ | F_{c} | h | k | | \|Fo| | F_{c} | n | k | ℓ | $\left\|F_{0}\right\|$ | $F_{\text {c }}$ | | $k \quad 2$ | $\mid F_{0}$ \| | $F_{\text {c }}$ | n | $k \quad \ell$ | \| $F_{0} \mid$ | F_{c} | n | i | ℓ | $\left\|F_{0}\right\|$ | F_{c} |
| :---: |
| c | C | 2 | 140.4 | 140.0 | 2 | 2 | 6 | 40.9 | 20.3 | 6 | 0 | 4 | 44.4 | 45.3 | -2 | 42 | 139.9 | 139.4 | -4 | | 77.2 53.9 | 78.2 53.8 | -6 | | 4 | $\begin{aligned} & 69.7 \\ & 60.9 \end{aligned}$ | 67.8 57.6 |
| 0 | c | 4 | 139.6 | 139.4 | 2 | 4 | 0 | 132.1 | -128.3 | 6 | 2 | 0 | 76.4 | 71.5 | | | 123.4 | 130.9 | -4 | | 53.9 73.4 | 53.8 72.7 | -6 | 6 | 6 | 48.9 | 57.6 47.6 |
| 0 | 0 | 6 | 91.9 | 68.6 | 2 | | $\frac{1}{1}$ | 26.6 | $27.7-$ | 6 | 2 | 1 | 5.6 | 5.6 | | 46 | 56.0 | 5 | 4 | $\begin{array}{ll}6 & 2 \\ 0 & 3\end{array}$ | 73.4 22.5 | 72.7 20.9 | -6 | 8 | 2 | 49.7 | 47.6 |
| 0 | 0 | 8 | 50.8 | 49.7 | 2 | 4 | 2 | 233.6 | 137.4 | 6 | 2 | | 56.3 | 56.4 | -2 | 48 | 56.0 15.9 | 57.6 15.0 | 4 | - 4 | 523.5 | 52.4 | -6 | 8 | 4 | 52.7 | 51.7 |
| \bigcirc | 0 | 10 | 36.1 | $\begin{array}{r}3.9 \\ \hline 182.6\end{array}$ | 2 | 4 | 4 | 14.8 | 14.5 | 6 | 2 | ${ }_{0}^{6}$ | 35.2 83.4 | 36.1 78.6 | | | 15.9 72.4 | $15.0-$ 70.0 | -4 | ${ }_{6} 15$ | 13.8 | 22.7- | -6 | 8 | 6 | 4.8 | 4.0 |
| 0 | 2 | 0 | 184.7 46.0 | 182.6 39.2 | 2 | 4 | 4 | 81.4 52.6 | 82.6 52.0 | 6 | 4 | 0 | 83.4 | 78.6 40.3 | -2 | 6 6 6 | 72.4 68.5 | 72.0 | -4 | 66 | 70.6 | \% | -7 | 1 | 2 | 7.5 | 8.4- |
| 0 | 2 | 3 | 12.2 | 12.0 | 2 | 6 | 0 | 47.6 | 47.2 | 6 | 6 | 0 | 52.8 | 49.0 | -2 | 66 | 49.7 | 50.6 | -4 | 68 | 51.4 | 51.6 | -7 | 1 | 3 | 19.1 | 19.3 |
| 0 | 2 | 4 | 87.7 | 8.1 | 2 | 6 | 1 | 20.1 | 22.2- | 6 | 6 | 2 | 45.3 | 46.4 | -2 | 68 | 53.0 | 50.6 | -4 | 82 | 75.9 | 73.4 | -7 | 1 | 5 | 9.8 | 10.5 |
| 0 | 2 | 5 | 11.0 | 9.5 | 2 | 6 | 2 | 68.5 | 70.7 | 6 | 6 | 6 | 31.8 | 32.6 | | 82 | 88.5 | 82.7 | 4 | 84 | -52.0 | $50.4-$ | -7 | 1 | 6 | 12.4 | 12.4 |
| 0 | 2 | 6 | 74.9 | 73.6 | 2 | 6 | 3 | 13.6 | 13.5 | 7 | 1 | 0 | 23.9 | 24.0 | -2 | 84 | 61.0 | 65.6 | 4 | 85 | 13.6 | 13.6- | -7 | 1 | 7 | 13.6 | 13.6 |
| 0 | 2 | 8 | 48.6 | 47.1 | 2 | 6 | 4 | 43.3 | 45.3 | 7 | 1 | 2 | 12.5 | 21.7- | | 56 | 47.5 | 49.6 | -4 | 6 | 54.8 | 55.4 | -7 | 3 | 5 | 26.0 | 25.4- |
| 0 | 4 | 0 | 212.6 | 213.0 | 2 | 6 | 6 | 40.8 | 40.5 | 8 | 0 | 0 | 54.3 | 51.9 | -2 | 102 | 45.8 | 4.4 | -5 | 111 | 12.2 | 11.9 | -7 | 5 | 6 | 14.7 19.4 | 14.1 18.8 |
| 0 | 4 | 2 | 116.6 | 121.3 | 2 | 6 | 0 | 72.2 | 69.9 | 8 | 2 | 0 | 43.3 | 42.8 | -3 | 11 | 25.6 | 26.3 | -5 | 12 | 13.5 | 11.7 | -7 | 5 | 3 | 19.4 | 18.8 |
| 0 | 4 | 3 | 6.2 | 9.3 | 2 | 8 | 1 | 13.1 | 12.8- | 5 | 4 | 0 | 48.7 | 45.7 | -3 | 12 | 74.4 | 75.5 | -5. | 13 | 34.0 | 34.0 | -7 | 5 | ? | 15.8 | 17.0 |
| 0 | 4 | 4 | 103.4 | 102.7 | 2 | 8 | 2 | 78.5 | 80.5 | 10 | 0 | 0 | 52.4 | 51.1 | -3 | 13 | 40.7 | 40.9 | -5 | 14 | 20.8 | 21.4 | -7 | 7 | 5 | 19.4 | 19.3- |
| 0 | 4 | 6. | 81.8 | 78.4 | 2 | 8 | 4 | 51.1 | 52.9 | 12 | 0 | 0 | 23.5 | 22.9 | -3 | 14 | 33.4 | 37.4 | -5 | 15 | 21.8 | 22.4 | -8 | 0 | 2 | 72.0 | 73.6 |
| 0 | 4 | 8 | 43.6 | 42.9 | 2 | 10 | 0 | 34.2 | 33.6 | -1 | 1 | 2 | 28.3 | 26.0 | -3 | 15 | 22.9 | 23.3 | -5 | 16 | 25.7 | 21.0- | -8 | 0 | 4 | 58.9 | 59.3 |
| 0 | 6 | 0 | 83.5 | 79.6 | 3 | 1 | 0 | 61.7 | 58.5 | -1 | 1 | 3 | 43.8 | 45.3 | -3 | 17 | 21.3 | 2 C .6 | -5 | 17 | 14.8 | 15.5 | -8 | 0 | 6 | 41.6 | 42.0 |
| 0 | 6 | 2 | 52.2 | 55.8 | 3 | 1 | 1 | 11.7 | 10.8- | -1 | 1 | 4 | 11.5 | $11.2-$ | -3 | 31 | 22.2 | 22.6- | -5 | $\frac{1}{3} 8$ | 23.9 | 23.6 | -8 | 0 | | 62.9 | 61.4 |
| 0 | 6 | 4 | 52.3 | 54.2 | 3 | 1 | 2 | 9.4 | 8.9 - | -1 | 1 | 5 | 17.3 | 17.0 | -3 | 32 | 48.9 | 50.6 | -5 | 31 | 33.3 | 33.7 | -8 | | | 24.7 | 25.1 |
| 0 | 6 | 6 | 61.3 | 59.0 | 3 | 3 | 0 | 36.3 | 33.8 | -1 | 1 | 7 | 15.1 | 14.2 | -3 | $3{ }^{3}$ | 26.0 | 25.8- | -5 | $\begin{array}{ll}3 & 2 \\ 3 & 3\end{array}$ | 15.8 | 11.6 | -6 | 2 | 2 | 65.0 | ${ }^{68.3}$ |
| 0 | 8 | 0 | 92.1 | 86.5 | 3 | 3 | 2 | 6.5 | $6.7-$ | -1 | 1 | 8 | 18.0 | 17.2 | -3 | 34 | 21.2 | 22.8 $36.1-$ | -5 | $\begin{array}{ll}3 & 3 \\ 3 & 4\end{array}$ | 10.8 | $11.0-$ 13.6 | -8 | 2 | 6 | 61.4 55.7 | 6.2 55.4 |
| 0 | 5 | 2 | 76.3 39 | 78.9 36.9 | 3 | 5 | 0 | 20.2 8.5 | 19.8 9.8 9, | -1 | | | 48.0 20.0 | 49.0- 20.9 | | | 35.5 16.4 | $36.1-$ | -5 -5 | $\begin{array}{ll}3 & 4 \\ 3 & 5\end{array}$ | 13.5 26.3 | 13.6 25.7 | - -8 | 2 | 8 | 55.7 74.0 | 55.4 73.0 |
| | 10 | 0 | 39.0 39.1 | 36.9 40.8 | 3 | 5 | 3 | 8.5 13.3 | $9.8-$ 13.8 | -1 | 3 | 2 | 20.0 15.2 | 20.9 14.6 | -3 -3 | $\begin{array}{ll}3 & 9 \\ 5 & 1\end{array}$ | 16.4 | $16.5-$ 16.5 | -5 -5 | 36 | 16.7 | $17.0-$ | -8 | | 10 | 38.4 | 38.2 |
| - | 1 | ${ }_{0}$ | 16.0 | 13.2 | 4 | 0 | 0 | 178.8 | 171.2 | -1 | 3 | 5 | 33.3 | $32.6-$ | -3 | 52 | 16.9 | 18.1- | -5 | 37 | 12.8 | 12.2- | -8 | 4 | | 61.9 | 64.8 |
| 1 | 1 | 2 | 50.1 | $52.3-$ | 4 | 0 | 2 | 70.9 | 70.4 | -1 | 3 | 8 | 14.7 | 13.5 | -3 | 53 | 22.3 | 21.3 | -5 | | 19.6 | 19.2 | - 8 | 4 | 4 | 49.3 | 49.5 |
| 1 | 1 | 3 | 16.2 | 15.9 | 4 | 0 | 4 | 89.4 | 92.0 | -1 | 5 | 1 | 17.4 | 16.2- | -3 | | 11.7 | 1 l .2 | -5 | 5 | 13.3 | 33.0 | | | ${ }^{6}$ | 41.9 | 42.3 |
| 2 | 1 | 4 | 42.2 | 42.5 | 4 | 2 | 0 | 110.4 | 104.4 | -1 | | 2 | 22.8 | 24.1 | | 57 | 23.4 16.9 | ${ }_{10.7}^{23.4}$ | -5 | $\begin{array}{ll}5 & 3 \\ 5 & 5\end{array}$ | 31.4 13.3 | 13.1 | -8 | 4 | ${ }_{2}$ | 50.3 53.2 | 49.6 |
| 1 | , | 1 | 16.1. | 17.0- | 4 | 2 | 1 | 35.0 | 34.3- | -1 | | 4 | 39.2 11.7 | 42.1 | -3 | 7
 7 | 19.4 | 20.3- | -5 -5 | 71 | 21.8 | 22.4 - | -8 | 6 | 4 | 44.6 | 45.7 |
| 1 | 3 | 3 | 34.3 10.3 | 36.3- | 4 | 2 | 4 | 35.5 | 67.3 | -1 | 5 | 7 | 13.1 | 11.5 | -4 | 02 | 145.5 | 149.5 | -5 | 93 | 13.9 | 12.6 | -8 | 6 | 6 | 52.1 | 50.1 |
| 1 | 3 | 4 | 27.9 | 26.2 | 4 | 4 | 0 | 126.6 | 120.7 | -1 | 7 | 1 | 23.8 | 22,9- | -4 | 04 | 104.4 | 105.2 | -6 | 02 | 62.3 | 61.9 | -9 | 1 | 4 | 20.4 | 22.8 |
| 2 | 5 | 0 | 5.3 | $1.3-$ | 4 | 2 | 2 | 67.3 | 68.3 | -1 | 7 | 2 | 10.8 | 9.6 | -4 | 06 | 54.8 | 85.0 | -6 | 04 | 123.3 | 124.8 | -9 | 3 | 4 | 17.7 | 18.4 |
| 2 | 5 | 2 | 8.2 | 8.4 | 4 | 4 | 4 | 75.4 | 75.3 | -1 | 7 | 5 | 19.5 | 20.4- | | 08 | 69.3 | 67.9 | -6 | 06 | 54.0 | 55.5 | -9 | 5 | 4 | 9.8 | 10.7 |
| 2 | 5 | 3 | 6.8 | 7.2 | 4 | 6 | 0 | 62.6 | 59.5 | -1 | 9 | 3 | 16.8 | 17.2 | | | 27.3 | 28.6 | - | 08 | 51.4 | 52.0 | -10 | 0 | 2 | 30.1 | 31.4 |
| 1 | 5 | 4 | 16.1 | 17.3 | 4 | 6 | 2 | 38.0 | 40.5 | -2 | 0 | 2 | 172.8 | 176.7 | | 22 | 95.8 | 95.8 | -6 | 010 | 42.5 | 42.1 | -10 | - | 4 | 46.2 | 4.45 |
| 1 | 7 | 0 | 13.4 | 13.0- | 4 | | 4 | 46.4 | 47.3 | -2 | 0 | 6 | 181.9 53.3 | 195.5 54.8 | | 23 | 19.8 | 19.8 79.2 | -6 | 2 | 171.9 | 46.7 113.6 | -10 | 0 | 6 | 45.6 | |
| 2 | 0 | 2 | 191.7 166.5 | 189.2 177.6 | | 8 | 2 | 69.2 55.4 | 65.2 56.4 | -2 | \bigcirc | ${ }_{8}^{6}$ | 53.3 72.7 | 54.8 70.2 | 4 | 2 2 | 12.8 | 79.2 12.4 | -6 | 20 | 60.2 | 67.3 | -10 | 2 | 4 | 33.7 56.1 | ${ }_{5}^{32.8}$ |
| 2 | 0 | 4 | 108.4 | 106.3 | | 8 | 4 | 48.6 | 50.2 | -2 | 2 | 1 | 20.8 | $20.8-$ | -4 | 26 | 86.6 | 89.7 | -6 | | 63.7 | 64.6 | -20 | 2 | 6 | 54.5 | 55.1 |
| 2 | c | 6 | 52.1 | 52.2 | | 10 | 4 | 28.9 | 31.3 | -2 | 2 | 2 | 85.7 | 79.8 | -4 | 28 | 74.6 | 75.0 | -6 | | 54.3 | 54.6 | -10 | 2 | 8 | 44.3 | 43.2 |
| 2 | 2 | 0 | 80.0 | 67.4 | 5 | 1 | 0 | 15.6 | 13.9- | -2 | | | 11.6 | 10.9 | -4 | 41 | 14.0 | 14.2- | -6 | 42 | 62.0 | 61.9 | -10 | 4 | 4 | 39.3 | 4.7 |
| 2 | 2 | 1 | 23.2 | 23.4- | 5 | 1 | 1 | 11.6 | $12.7-$ | -2 | 2 | 4 | 132.7 | 136.9 | 4 | 42 | 119.2 | 120.0 | -6 | 4 | 92.2 | 91.9 | | | | 42.4 | 42.2 |
| 2 | 2 | 2 | 103.6 | 98.6 | 5 | 3 | 0 | - 26.7 | 15.2- | -2 | 2 | 6 | 48.9 | 49.5 | 4 | 43 | 20.4 | 18.5 | -6 | 4 | 54.0 | 54.2 | | | | | |
| 2 | 2 | 3 | 12.2 | 11.9 | 6 | 0 | 0 | 103.7 | 98.6 | -2 | 2 | 8 | 71.2 | 70.8 | -4 | 44 | 79.7 | 79.5 21.9. | -6 | $\begin{aligned} & 4 \\ & 6 \end{aligned}$ | $\begin{aligned} & 42.7 \\ & 43.8 \end{aligned}$ | 43.0 | | | | | |

was assumed for each atom. The observations were weighted as the reciprocal of their variances, which were estimated from the following expression:

$$
\sigma^{2}(F)=\frac{F^{2}}{4(T-B)^{2}}\left[T+B+0 \cdot 0004(T-B)^{2}\right]
$$

in which $T=$ total count, $B=$ background count, and the additive term involving $T-B$ is to allow for errors
proportional to the net count, such as variation in the beam intensity and absorption errors. A discussion of this scheme of weighting counter data is given by Busing \& Levy (1957). With this refinement the discrepancy coefficient decreased to 0.032 . The positional parameters, standard diviations, and anisotropic temperature factors are listed in Tables 2 and 3. The new positional parameters are within one standard

Fig. 1. Structure of $\mathrm{Cr}_{2} \mathrm{~F}_{5}$. Each octahedron contains a chromium ion at its center.
One of each of the two types of octahedral coordination is shown in detail. Primed numbers indicate symmetry-related ions.
deviation of the previous values, but the new standard deviations are smaller. The observed and calculated structure factors are shown in Table 4.

Discussion of the structure

In the structure of $\mathrm{Cr}_{2} \mathrm{~F}_{5}$, shown in Fig. 1, each chromium ion is coordinated by an octahedron of fluoride ions. The shape of each octahedron is determined by the valence state of its central cation; the two different configurations are represented by the octahedra about Cr^{3+} at $0,0,0$ (which we call a 'trivalent octahedron') and about Cr^{2+} at $0, \frac{1}{2}, 0$ (a 'divalent octahedron'). Table 5 gives the pertinent interionic distances and angles in the crystal and their standard deviations.

The trivalent octahedra are nearly regular, with an average $\mathrm{Cr}-\mathrm{F}$ bond length of $1 \cdot 89 \AA$, close to the value of $1.90 \AA$ in CrF_{3}. The divalent octahedron consists of a Cr^{2+} ion at the center of a planar group of four fluoride ions ($\left.\mathrm{F}\left(2^{\prime \prime \prime}\right), \mathrm{F}(3) . \mathrm{F} 2^{\text {iv }}\right), \mathrm{F}\left(3^{\prime \prime}\right)$, Fig. 1) which is approximately square. The Cr^{2+} ion also has two longer bonds to fluoride ions at $2.57 \AA\left(\mathrm{~F}\left(2^{\prime \prime}\right), \mathrm{F}\left(2^{\mathrm{v}}\right)\right.$, Fig. 1). The long bonds are tilted away from the normal to the planar square by 18.5° in the direction of two corners of the square. This results in $\mathrm{F}\left(2^{\prime \prime}\right)$ and $F\left(2^{\mathrm{v}}\right)$ each being at distances of $3.73,3.51,3.04$, and $2 \cdot 71 \AA$ from the ions in the square (Table 5).

Jack \& Maitland (1957) did not describe the configuration of the octahedron in the structure of CrF_{2} except for cation-anion distances, but a detailed examination shows that it is also distorted. In this structure there is also a nearly square arrangement of four fluoride ions and two more distant ones. If the fluoride ion at $2.43 \AA$ is designated the apex of the

Table 5. Interionic distances, angles, and standard deviations from anisotropic refinement

Distance		σ
Cr^{3+} - $\mathrm{F}(1)$	$1.894 \AA$	$0 \cdot 002 \AA$
$\mathrm{Cr}^{3+} \mathrm{F}(2)$	1.904	$0 \cdot 004$
$\mathrm{Cr}^{3+}-\mathrm{F}(3)$	1.877	$0 \cdot 003$
$\mathrm{Cr}^{2+}-\mathrm{F}\left(2^{\prime \prime}\right)^{*}$	2.572	$0 \cdot 004$
$\mathrm{Cr}^{2+}-\mathrm{F}(3)$	1.955	$0 \cdot 004$
$\mathrm{Cr}^{2+} \mathrm{F}\left(2^{\prime \prime \prime}\right)$	$2 \cdot 010$	0.005
Trivalent octahedron		
$\mathrm{F}(1)-\mathrm{F}(2)$	$2 \cdot 692$	$0 \cdot 004$
$\mathrm{F}(1)-\mathrm{F}(3)$	$2 \cdot 640$	$0 \cdot 005$
$\mathrm{F}(1)-\mathrm{F}\left(3^{\prime}\right)$	$2 \cdot 694$	0.006
$\mathrm{F}(1)-\mathrm{F}\left(2^{\prime}\right)$	$2 \cdot 679$	$0 \cdot 006$
$\mathrm{F}(2)-\mathrm{F}(3)$	$2 \cdot 682$	$0 \cdot 005$
$\mathrm{F}(2)-\mathrm{F}\left(3^{\prime}\right)$	$2 \cdot 666$	0.005
Divalent octahedron		
$\mathrm{F}\left(2^{\prime \prime}\right)-\mathrm{F}\left(2^{\text {iv }}\right)$	2.718	$0 \cdot 007$
$\mathrm{F}\left(2^{\prime \prime}\right)-\mathrm{F}\left(2^{\prime \prime \prime}\right)$	3.731	0.003
$\mathrm{F}\left(2^{\prime \prime}\right)-\mathrm{F}(3)$	3.041	0.005
$\mathrm{F}\left(2^{\prime \prime}\right)-\mathrm{F}\left(3^{\prime \prime}\right)$	$3 \cdot 410$	0.005
$\mathrm{F}\left(2^{\text {iv }}\right)-\mathrm{F}(3)$	2.795	0.005
$\mathrm{F}\left(2^{\prime \prime \prime}\right)-\mathrm{F}(3)$	$2 \cdot 813$	$0 \cdot 006$
Angle		σ
$\mathrm{F}(2) \quad-\mathrm{Cr}^{3+} \mathrm{F}(1)$	90.28°	$0 \cdot 14^{\circ}$
$\mathrm{F}(2)-\mathrm{Cr}^{3+}-\mathrm{F}(3)$	$90 \cdot 34$	$0 \cdot 15$
$\mathrm{F}(3) \quad-\mathrm{Cr}^{3+}-\mathrm{F}(1)$	88.84	$0 \cdot 18$
$\mathrm{F}\left(2^{\prime \prime \prime}\right)-\mathrm{Cr}^{2+} \mathrm{F}(3)$	90.38	$0 \cdot 14$
$\mathrm{F}\left(2^{\prime \prime \prime}\right)-\mathrm{Cr}^{2+} \mathrm{F}\left(2^{\mathrm{v}}\right)$	71.58	$0 \cdot 15$
$\mathrm{F}\left(2^{\prime \prime}\right)-\mathrm{Cr}^{2+} \mathrm{F}(3)$	83.21	$0 \cdot 13$

[^1]octahedron, then the distances from the apex to the corners of the square are $3 \cdot 51,3 \cdot 13,2 \cdot 81$, and $2 \cdot 76 \AA$. The angles between the apical fluoride, the chromium ion, and each of two adjacent corners of the square

Table 6. The principal axis r.m.s. thermal displacements and orientations*

Ion	r	$\mu(r)$	$\varphi(r, 1)$	$\varphi(r, 2)$	$\varphi(r, 3)$
Cr^{3+}	1	$0.077 \pm 0.004 \AA$	$48 \pm 8^{\circ}$	$44 \pm 10^{\circ}$	$100 \pm 14^{\circ}$
	2	0.089 ± 0.004	74 ± 16	118 ± 17	147 ± 19
	3	0.096 ± 0.004	133 ± 10	59 ± 12	121 ± 19
Cr^{2+}	1	0.083 ± 0.004	80 ± 11	79 ± 13	15 ± 17
	2	0.094 ± 0.004	127 ± 5	139 ± 6	76 ± 17
	3	0.125 ± 0.003	141 ± 4	51 ± 4	89 ± 4
$\mathrm{~F}^{-}(1)$	1	0.100 ± 0.011	5 ± 7	85 ± 7	90 ± 0
	2	0.156 ± 0.009	90 ± 0	90 ± 0	180 ± 0
	3	0.162 ± 0.009	95 ± 7	5 ± 7	90 ± 6
$\mathrm{~F}^{-}(2)$	1	0.087 ± 0.007	78 ± 6	16 ± 7	101 ± 6
	2	0.134 ± 0.007	141 ± 12	74 ± 7	56 ± 12
	3	0.156 ± 0.006	54 ± 12	88 ± 6	36 ± 12
$\mathrm{~F}^{-}(3)$	1	0.087 ± 0.009	98 ± 6	87 ± 4	7 ± 5
	2	0.150 ± 0.006	162 ± 11	107 ± 12	97 ± 6
	3	0.171 ± 0.006	106 ± 11	17 ± 11	96 ± 4

* $\mu(r)$ is the r.m.s. displacement along axis r, and $\varphi(r, j)$ is the angle between axis r and the j th cartesian axis.
are 76° and $78 \frac{1}{2}^{\circ}$. Thus, the long Cr-F bond is inclined towards the edge of the square rather than towards a corner.

The causes of distortion of the divalent octahedra in both structures are twofold. First, the tetragonal extension of two $\mathrm{Cr}-\mathrm{F}$ bonds is due to the repulsion of the fluoride ions by electrons in the $d_{z^{2}}$ orbital of Cr^{2+}, and secondly, the deviation from tetragonal symmetry is needed to achieve close packing of fluoride ions. In CrF_{2} the ions in the equatorial square of the octahedron are all in contact, and the tilt of the long $\mathrm{Cr}-\mathrm{F}$ bond towards the edge of the square provides close packing of fluoride ions in two (equivalent) faces of the octahedron. The configuration is similar in $\mathrm{Cr}_{2} \mathrm{~F}_{5}$, but the contraction of the edge shared by two octahedra results in further distortion. In CrF_{2} the octahedra share corners only.

The octahedra in $\mathrm{Cr}_{2} \mathrm{~F}_{5}$ are connected in an infinite network by sharing corners and edges. The trivalent octahedra share corners with each other and with the divalent octahedra, while the divalent octahedra share edges among themselves and share corners with two different adjacent trivalent octahedra. In the layers approximately parallel to the (010) plane, one type of fluoride ion, $F(2)$, is shared by two divalent cations and one trivalent cation. The strength of each of the three bonds to this fluoride ion is $+\frac{1}{3},+\frac{1}{3}$, and $+\frac{1}{2}$, respectively, so that a local electrical imbalance of $+\frac{1}{6}$ exists. The fluoride ion, $\mathbf{F}(1)$, which serves as a link between two trivalent octahedra receives two bonds of strength $+\frac{1}{2}$, exactly neutralizing its negative charge. The fluoride ion which connects a divalent with a trivalent octahedron along the \mathbf{b} axis receives two bonds of strength $+\frac{1}{2}$ and $+\frac{1}{3}$, respectively, leaving an imbalance of $-\frac{1}{6}$.

For each ion the r.m.s. components along its principal axes of thermal motion were calculated from the anisotropic temperature factors (Table 3) with the Busing-Levy program (1959). In Table 6 these
displacements, $\mu(r)$, are given in addition to the orientation of the principal axes relative to cartesian axes, defined as follows. Cartesian axis 1 is along c, axis 3 is along \mathbf{b}, and axis 2 is in the direction of $-\mathbf{c} \times \mathbf{b}$. The thermal motion is in qualitative agreement with expectation from the arrangement of ions in the structure. The motion of the Cr^{3+} ion is nearly isotropic because of its symmetrical environment, while the displacement of the Cr^{2+} ion is appreciably greater in the direction of its long Cr-F bonds. Each of the crystallographically independent fluoride ions has its smallest thermal displacement nearly along its bond direction to a Cr^{3+} ion. Perpendicular to these bonds, the motions of $F(1)$ and $F(3)$ are greater than that of $F(2)$, since $F(1)$ and $F(3)$ are each approximately on a line joining two cations, while $F(2)$ is shared by three cations in a triangular array.

References

Busing, W. R. \& Levy, H. A. (1957). J. Chem. Phys. 26, 563.
Busing, W. R. \& Levy, H. A. (1959). A Crystallographic Function and Error Program for the IBM 704, ORNL CF-59-12-3. Oak Ridge National Laboratory, Tennessee.
Cable, J. W., Wilkinson, M. K. \& Wollan, E. O. (1960). Phys. Rev. 118, 950.
International Tables for X-ray Crystallography (1952). Vol. I. Birmingham: Kynoch Press.
Jack, K. H. \& Maitland, R. (1957). Proc. Chem. Soc. London, p. 232.
Jette, E. R. \& Foote, F. (1933). J. Chem. Phys. 1, 29. Knox, K. (1960). Acta Cryst. 13, 507.
Orgel, L. E. \& Dunitz, J. D. (1957). Nature, Lond. 179, 462.

Sturm, B. J. (1962). Inorg. Chem. 1, 665.
Tracey, J. W., Gregory, N. W. \& Lingafelter, E. C. (1962). Acta Cryst. 15, 672.

Wollan, E. O., Child, H. R., Koehler, W. C. \& Wilkinson, M. K. (1958). Phys. Rev. 112, 1132.

[^0]: * Operated for the U.S. Atomic Energy Commission by Union Carbide Corporation.

[^1]: * See Fig. 1 for identification of ions with primed notation

